molecular electron transfer may occur from sulfur to the hydroperoxide moiety, most feasibly via a Fenton-type mechanism¹⁶ in Ia (eq 4). Sulfoxide formation in this case constitutes an overall

$$I/Ia \rightarrow R(Hal)O^{\bullet} + Me_2SO (+H_2O)$$
 (4)

two-electron transfer and does not involve the 1e intermediate. Evidence for R(Hal)O[•] is indicated through Cl[•] atoms (from β -cleavage) which can be trapped by 1,1-dichloroethene and which, via reaction with tert-butyl alcohol,¹⁷ increase the contribution of 'OOCH₂CMe₂OH-induced DMSO formation.¹⁸ Direct transfer of an oxygen atom is disregarded since $R(Hal)^{18}O^{18}O^{\cdot}$ did not yield any ¹⁸O-labeled DMSO.

On the basis of our proposed mechanism, the 2e-process yield amounts to G = 0.35 (13% of CCl₃OO[•]) in the CCl₄/10⁻³ M Me₂S system, G = 1.8 (65% of the CHCl₂OO[•]) in the CHCl₃/10⁻³ M Me₂S system, and G = 1.4 (50% of CHCl₂OO[•]) in the CHCl₃/7.4 $\times 10^{-3}$ M Me₂S system.¹⁹

Degradation of R(Hal)OO[•] results in quantitative dehalogenation irrespective of the donor, yielding $H^+/Cl^-/CO_2$ and $H^+/$ Cl⁻/HCOO⁻ from CCl₄⁸ and CHCl₃²⁰ systems, respectively. The route leading to the additional conductivity in the sulfide-containing solutions is considered to be the 2e process, which via the oxy radical liberates the same ions as the hydroperoxide but at a much faster rate. In full support of our mechanism, the yields of conductivity from complete R(Hal)O[•] degradation²¹ match the DMSO yields from the 2e process.

Positivation of sulfur in I favors reaction 3 and increases with halogenation of the peroxyl moiety. Electron transfer in Ia (reaction 4) should follow the opposite trend. This explains why the 2e yield is higher from CHCl₂OO[•] than from CCl₃OO[•].²² Lower yields of the 2e process at higher sulfide concentrations are in accord with the competition between reactions 3 and 4.

In conclusion, halogenated peroxyl radicals, besides being good one-electron oxidants, can also undergo two-electron processes with certain compounds like sulfides, avoiding the 1e intermediate as free species but requiring adduct formation. One general reason to postulate this adduct as the all-important intermediate is that free Me_2S^{+} and $(Me_2S \therefore SMe_2)^+$ are only known as oxidants but not reductants²³ and accordingly would not be able to efficiently transfer a second electron to the hydroperoxide (in this case also free). Our present results and conclusions complement electrochemical findings which not only discuss electrode-bound Me₂S-(OH) intermediates (rather than free radical cations) in sulfide oxidation²⁴ but also indicate an overall fast 2e process since less positive potentials are required for oxidation of the 1e intermediate than for the sulfide itself,²⁵ and our results demonstrate the fa-

(19) Two-electron yield = total DMSO - 1e process $(Me_2S::SMe_2^+)$ -'OOCH2CMe2OH ('OH and Cl') contribution.

(20) Asmus, K.-D.; Bahnemann, D.; Krischer, K.; Lal, M.; Mönig, J. Life Chem. Rep. 1985, 3, 1.

(21) Quantitative evaluation of conductivity results is carried out by using the equivalent conductivities $\Lambda(H^+) = 315 \ \Omega^{-1} \ cm^2$, $\Lambda(Cl^-) = 65 \ \Omega^{-1} \ cm^2$, $\Lambda(HCOO^-) = 45 \ \Omega^{-1} \ cm^2$, and $\Lambda(\text{organic cations}) \approx 50 \ \Omega^{-1} \ cm^2$ (ref 10), pK(HCOOH) = 3.725, and taking into account that, on the basis of the measured conductivity of the H^+/Cl^- pair in our systems, the equivalent conductivity of the H^+/Cl^- pair in our systems, the equivalent conductivity in mixtures of H2O/tert-butyl alcohol (9:1, v/v) amounts to ca.

80% of that in pure water. (22) DMSO via a 2c process is also indicated from Me₂S reaction with CH₂ClOO• and CH₃OO[.] Quantitative evaluation on the basis of conductivity results and $(S:S)^+$ formation was not possible since formation rates were too (23) Bonifacio, M.; Weiss, J.; Chaudhri, S. A.; Asmus, K.-D. J. Phys.

Chem. 1985, 89, 3910.

(24) Houghton, D. S.; Humffray, A. A. Electrochim. Acta 1972, 17, 1421. (25) Wilson, G. S., private communication.

vorable influence (and need) of water for electrochemical sulfoxide formation. Our results also relate to sulfoxide formation by other oxidizing, especially reactive oxygen, species via mechanisms which, to some extent, are still under discussion.²⁶⁻³⁵

Acknowledgment. The financial support provided by the Association of International Cancer Research (AICR) is gratefully acknowledged.

- (26) Miotti, U.; Modena, G.; Sedea, L. J. Chem. Soc. B 1970, 802. (27) Yang, S. F. Biochemistry 1970, 9, 5008.
- (28) Liang, J.-J.; Gu, C.-L.; Kacher, M. L.; Foote, C. S. J. Am. Chem. Soc. 1983, 105, 4717.
- (29) Sawaki, Y.; Ogata, Y. J. Org. Chem. 1984, 49, 3344.
 (30) Miller, A. E.; Bischoff, J. J.; Bizub, C.; Luminoso, P.; Smiley, S. J. Am. Chem. Soc. 1986, 108, 7773.
- (31) Doi, J. T.; Goodrow, M. H.; Musker, W. K. J. Org. Chem. 1986, 51, 1026
- (32) Sawaki, Y.; Ishikawa, S. J. Am. Chem. Soc. 1987, 109, 584.
 (33) Kim, Y.; Yoon, D. C. Tetrahedron Lett. 1988, 29, 6453.
 (34) Nagano, T.; Yamamoto, H.; Hirobe, M. J. Am. Chem. Soc. 1990, 112, 3529.

(35) Evans, B. J.; Doi, J. T.; Musker, W. K. J. Org. Chem. 1990, 55, 2580.

The Complementary Redox Properties of Viologens and Pyromellitimides: A New Class of Organic Conductors

Stephen L. Buchwalter,* Revathi Iyengar,[†] Alfred Viehbeck, and Terrence R. O'Toole

> IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York 10598 Received October 1, 1990

Organic charge-transfer (CT) salts¹ have been of interest for some years, especially since the discovery of the metallic conductivity of the TTF-TCNQ salt.² We have begun an investigation of the charge-transfer chemistry of viologens and pyromellitimides, based on their complementary redox properties, with the intention of proceeding from intermolecular examples to intramolecular CT salts³ and finally to examples in which the viologens and pyromellitimides are incorporated in a polymer. We report progress in the first two stages of this investigation, including isolation of a new, highly conductive intermolecular CT salt and electrochemical characterization of a covalently linked viologen/pyromellitimide. These studies point to an interesting new class of organic solid-state materials.

The ability of the violene⁴ family of compounds to exist in three distinct oxidation states is well-known. Recent pioneering work by Haushalter and Kraus⁵ and Mazur,⁶ which has been extended by Viehbeck et al.,⁷ has established that pyromellitimides can also

[†]Current address: American Cyanamid Company, Stamford Research Laboratories, Stamford, CT 06904

(1) (a) Cowan, D. O.; Wiygul, F. M. *Chem. Eng. News* **1986**, *July 21*, 28-45. (b) Torrance, J. B. *Acc. Chem. Res.* **1979**, *12*, 79-86. (c) Bryce, M. R.; Murphy, L. C. *Nature* **1984**, *309*, 119-126. (d) Heywang, G.; Born, L.; Fitzky, H.-G.; Hassel, T.; Hocker, J.; Müller, H.-K.; Pittel, B.; Roth, S.

 Angew. Chem., Int. Ed. Engl. 1989, 28, 483-485.
 (2) (a) Ferraris, J. P.; Cowan, D. O.; Walatka, V., Jr.; Perlstein, J. H. J.
 Am. Chem. Soc. 1973, 95, 948-949. (b) Coleman, L. B.; Cohen, M. J.;
 Sandman, D. J.; Yamagishi, F. G.; Garito, A. F.; Heeger, A. J. Solid State Commun. 1973, 12, 1125-1132

(3) (a) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277-283. (b) Panetta, C. A.; Baghdadchi, J.; Metzger, R. M. Mol. Cryst. Liq. Cryst. 1984, 107, 107-113. (c) Becker, J. Y.; Bernstein, J.; Bittner, S.; Levi, N.; Shaik, S. S. J. Am. Chem. Soc. 1983, 105, 4468-4469. (d) Becker, J. Y.: Bernstein, J.; Bittner, S.; Sarma, J. A. R. P.; Shaik, S. S. Chem. Mater. 1989, 1, 412-420.

(4) (a) Hünig, S. Pure Appl. Chem. 1967, 15, 109-122. (b) Hünig, S.;

Berneth, H. Top. Curr. Chem. 1980, 92, 1-44.
(5) Haushalter, R. C.; Kraus, L. J. Thin Solid Films 1983, 102, 161-171.
(6) (a) Mazur, S.; Reich, S. J. Phys. Chem. 1986, 90, 1365-1372.
(b) Mazur, S.; Lugg, P. S.; Yarnitzky, C. J. Electrochem. Soc. 1987, 134, 346-353.

(7) (a) Viehbeck, A.; Kovac, C. A.; Buchwalter, S. L.; Goldberg, M. J.; Tisdale, S. L. In *Metallization of Polymers*; Sacher, E., Pireaux, J.-J., Kowalczyk, S., Eds.; ACS Symposium Series 440; American Chemical Society: Washington, DC, 1990; Chapter 29. (b) Viehbeck, A.; Goldberg, M. J.; Kovac, C. A. J. Electrochem. Soc. 1990, 137, 1460-1466.

⁽¹⁵⁾ Asmus, K.-D. In Sulfur-centered Reactive Intermediates in Chemistry and Biology; Chatgilialoglu, C., Asmus, K.-D., Eds.; NATO ASI Series A, Life Sciences, Vol. 197: Plenum Press: New York and London, 1991; p 155

⁽¹⁶⁾ Gilbert, B. C.; Stell, J. K. J. Chem. Soc., Perkin Trans. 2 1990, 1281. (17) Gilbert, B. C.; Stell, J. K.; Peet, W. J.; Radford, K. J. J. Chem. Soc., Faraday Trans. 1 1988, 84, 3319.

⁽¹⁸⁾ Mao, Y.; Schöneich, C.; Asmus, K.-D., unpublished results. (Cl[•] addition to 1.1-dichloroethene in O₂-containing aqueous solution results mainly in monochloroacetic acid. Cl[•] reaction with *tert*-butyl alcohol leads to H⁺/Cl⁻ and *CH2CMe2OH.)

Table I.	Reduction Potentials ^a for 1 and 2			
•	compd	${}^{1}E_{1/2}$; V	$^{2}E_{1/2}$, V	
	1	-0.370	-0.752	
	2	-0.685	-1.392	

^aReduction potentials measured by cyclic voltammetry vs SCE at 0.5 mM in DMF/0.1 M Bu₄NBF₄.

Figure 1. Cyclic voltammetry of 1 mM 3 in DMF with 0.1 M Bu₄NBF₄ at 50 mV/s. Voltages are vs SCE.

display three distinct oxidation states. The complementary charges and overlapping reduction potentials (see Table I) imply that a molecule in which both a viologen and a pyromellitimide are incorporated would, under reducing conditions, first add an electron to the viologen unit, generating a radical-cation, and then add a second electron to the pyromellitimide, leading to a radical-cation/radical-anion.

This possibility has been explored first by cyclic voltammetry (CV) and later by spectroelectrochemistry in dimethylformamide (DMF) containing 0.1 M Bu₄NBF₄. Both compound 3,⁸ in which the two moieites are covalently linked, and an equimolar mixture of diethyl viologen diiodide (1) and N,N'-dibutylpyromellitimide (2) were studied. The CVs for both 3 (Figure 1) and the 1/2mixture can be readily understood as a superposition of the CV of the imide on that of the viologen. Note that the middle peak is roughly twice the height of the other two peaks because it is the result of two redox couples-the first imide reduction and the second viologen reduction-being poorly resolved in the CV.

Bulk electrolysis of 3 (N_2 glove box) at -0.6 V (vs saturated calomel electrode, SCE) generated the characteristic spectrum of the viologen radical-cation. The solution was then reduced further until a rest potential of $E_{soln} = -0.70$ V was attained, which resulted in a species showing absorptions for both the viologen radical-cation and the pyromellitimide radical-anion (Figure 2). Successive electrolyses to $E_{soln} = -0.75, -0.79, and -1.40 V led$ first to the disappearance of the radical-cation absorption and appearance of absorptions of the neutral quinoid form of the viologen and then to disappearance of the pyromellitimide radical-anion absorption and appearance of the dianion absorption. Thus, the electrochemistry of 3 traverses five states: colorless dication, blue radical-cation, blue-green radical-cation/radical-anion, green radical-anion, and rose dianion.

The radical-cation/radical-anion state is an unusual³ structure for an organic molecule in its ground state, i.e., a state not populated via photoexcitation. From both the CV and UV-vis results,

(8) See supplementary material.

Figure 2. UV-vis spectra recorded by diode array detection: (---) 0.05 mM 1 in DMF with 0.1 M Bu₄NBF₄ after bulk electrolysis to $E_{soln} =$ -0.6 V; (...) similar soln of 2 at $E_{soln} = -1.0$ V; (--) similar solution of 3 at $E_{soin} = -0.70$ V.

it is clear that there is little interaction between the unpaired electrons, as might have been predicted from the length and relative rigidity of the aralkyl linkage.

Bulk electrolysis on a solution of the viologen was also performed until it was completely converted to the neutral form (1^0) . At this point, addition of an equimolar amount of the unreduced imide (eq 1) resulted in a UV-vis spectrum very similar to that of doubly reduced 3.

$$\mathbf{1}^0 + \mathbf{2} \rightleftharpoons \mathbf{1}^{-} \tag{1}$$

With the above experiments in electrolyte solution serving as our entry into the CT chemistry of viologens and pyromellitimides, we turned next to the solid state. Using the reported⁹ synthesis of 1° free of electrolyte, we prepared an equimolar solution of 1° and 2 in dimethoxyethane. Precipitation with *n*-heptane resulted in a purple, air-sensitive powder whose conductivity in pressed pellet form was $10^3-10^4 \Omega^{-1} \text{ cm}^{-1}$ (four-point probe under argon). Dissolution of this compound in DMF/0.1 M Bu₄NBF₄ resulted in the characteristic visible absorptions of both the viologen radical-cation and the pyromellitimide radical-anion, providing good evidence for assigning it the structure of a CT salt of 1⁰ and

Further characterization of this material, including its lowtemperature electrical behavior, is underway. It is worth noting, however, that its room temperature conductivity even in pressed pellet form¹¹ is significantly higher than that of single crystals of many other organic conductors, including TTF-TČNQ, Ic and is comparable to that of doped polyconjugated polymers such as poly(acetylene).¹² Extensions to the intramolecular CT salt form of 3 and to polymeric versions are of interest, and it is anticipated that significant elaboration of this new class of CT salts can be achieved by adjusting the redox potentials of both components by structural variation, for which ample possibilities exist.^{1d,4,6,7,13}

Acknowledgment. Discussions with S. Mazur, C. A. Kovac, M. J. Goldberg, and M. Ritter and assistance with NMR spectra by R. R. Thomas are gratefully acknowledged, as is a reviewer's help in supplying ref 3b.

Supplementary Material Available: Synthetic procedures and spectral data for 3 and the CT salt (6 pages). Ordering information is given on any current masthead page.

⁽⁹⁾ Mohammad, M. J. Org. Chem. 1987, 52, 2779-2782.

⁽¹⁰⁾ Coulometry of the salt in the electrolyte solution was thoroughly consistent with a 1:1 ratio of the constituents. We have been unable to obtain a satisfactory elemental analysis of the salt, but an NMR spectrum obtained after dissolution of the salt in DMF- d_7 containing excess I_2 was readily identified as that of a 1:1 mixture of 1 and 2.

⁽¹¹⁾ Pressed-pellet conductivities are commonly expected to be as much as a factor of 10^2 lower than that of single crystals of the same material; e.g.: Bringley, J. F.; Fabre, J.-M.; Averill, B. A. J. Am. Chem. Soc. 1990, 1/2, 4577-4579.

⁽¹²⁾ Naarman, H. In Electronic Properties of Conjugated Polymers;
Kuzmany, H., Mehring, M., Roth, S., Eds.; Springer Series in Solid-State Sciences 76; Springer-Verlag: Berlin, 1987; p 12.
(13) (a) Langhals, H. Chem. Ber. 1988, 121, 225-230. (b) Ford, W. E.; Hiratsuka, H.; Kamat, P. V. J. Phys. Chem. 1989, 93, 6692-6696.